
Transformers

Michele Garibbo

1 Overview

Here, I provide some notes on the Transformer architecture, by especially fo-
cusing on its core component: self-attention. Next, I provide a quick overview
of the 3 main Transformer architectures. For more details on how the different
Transformer components interact, you can look at my own commented imple-
mentation of the original Transformer architecture here.

2 Self-attention

The notes on self-attention are primarily based on the amazing blog post avail-
able at https://peterbloem.nl/blog/transformers.

2.1 Self-attention at the core

Figure 1: SA output, illustrating the relations between the word ’it’ and all
the other words captured by two attention heads (one orange, the other green).
Image taken from here.

Self-attention (SA) is a sequence-to-sequence operation, taking a sequence, {x1, x2 · · · , xt}
and outputting a sequence, {y1, y2 · · · , yt}, where all vectors have dimension l.
To compute the sequence, y, SA simply computes a weighted sum across all

1

https://github.com/michele1993/Transformer_from_scratch/tree/main
https://peterbloem.nl/blog/transformers
https://blogs.oracle.com/ai-and-datascience/post/multi-head-self-attention-in-nlp


inputs, x,

w′
ij = x⊺

i xj (1)

wij =
expw′

ij∑
j expw

′
ij

(2)

yi =
∑
j

wijxj (3)

where w is not a traditional parameter, but it is a function of the input se-
quence. In this case, we take this function to be the dot-product across the
input sequence (i.e., simplest case). Specifically, eq. 1 is computing yi by simply
summing over all inputs, each weighted by how ”similar” (dot-product) each
input is to xi. The assumption is that the more similar an input is to xi, the
more it should contribute to yi. I guess there is an implicit ’order bias’ here,
where output yi should most likely be driven by inputs that are similar to xi

(once we introduce learnable weights, this should no longer be the case). As a
result, yi encodes the relation between xi and the other input (embeddings) xj

(i.e., enabling to infer relations across elements of the input sequence). Since
the dot product is unbounded, we squish everything between [0, 1], by apply-
ing a softmax operation. By summing over all inputs to compute each output,
SA allows any element in the sequence to arbitrarily contribute to each output
without any ’order/temporal’ limitation (e.g., unlike RNNs where each output
depends on the previous time step). For instance, Fig. 1 show SA is able to
infer the word ’it’ has a strong relation to the initial words ’The animal’, since
the word ’it’ refers to ’The animal’ (i.e.,,the subject of the sentence). SA is able
to infer this relation despite the two words being far apart in the sequence (i.e.,
9 time steps a part).

Note, at the moment there is no learning involved, this is just a simple example
to see how SA operates (see Fig. 2 for code implementation). Finally, it is worth
noting that SA is permutation equivariant, which means if I permute the
inputs (i.e., change the order) the SA output will be the same, just permuted
(i.e., SA basically ignores the order of the sequence, just processing the sequence
as a set). This is partially the reason why positional embeddings are added to
the input embedding.

2.2 Self-attention in transformers

Self-attention in Transformers adds three key tricks to the core operations de-
scribed above,

1) Query, keys, values:

Each time the input sequence x is used in the SA operation, we apply a linear

2



Figure 2: Simplest SA implementation in Pytorch

transformation to it, allowing us to introduce learnable parameters,

qi = Wqxi ki = Wkxi vi = Wvxi (4)

(5)

w′
ij = q⊺i kj (6)

wij =
expw′

ij∑
j expw

′
ij

(7)

yi =
∑
j

wijvj (8)

The vectors qi, ki, vi are respectively called query, key and value, enabling SA
to have controllable parameters, Wq,Wk,Wv.

Note, for each query qi, the softmax ’picks’ the dot product, w′
ij , encoding the

key, kj that matches most with the given query qi, This is because each row w′
i

encodes the dot product for the same query i across different keys, j and the
softmax is computed across the row of w′ (i.e., across different keys). As a result,
any row wi has one high entry (i.e., the dot product of the key j matching most
the query i) with all other entries being close to zero. Intuitively, this follows
from considering the softmax as a ’differentiable max’ function, increasing the
largest value and sending all others value to approximately zero. Finally, when
we multiply each entry in wi with the value vj , only one value will be selected
(since most entries in wi are close to zero due to the softmax). Basically, the
idea is, for any given query, to select the value for which the key matched most
the given query.

2) Normalising the dot product:

The soft-max operation is very sensitive to large values (i.e., exponential func-
tion). This kills gradients, slowing or even impairing learning. Therefore, it is
best to normalise the dot product by size of the input dimension, before passing

3



it to the soft-max,

w′
ij =

q⊺i xj√
l

(9)

where l is the size of input dimension. Note, this makes sense since the dot
product tend to scale with the input dimension.

3) Multi-head attention:

Consider the following sentence, ”Mary gave roses to Susan”, represented by
input embeddings,

xMary, xgave, xroses, xto, xSusan (10)

After the SA operation, you get another sequence,

yMary, ygave, yroses, yto, ySusan (11)

where, for instance, ygave is fully determined by the weighted sum over all in-
puts, each input weighted by ”how close” the input is to xgave. However, the
word ’gave’ has different relations to different parts of the sentence. Specifi-
cally, ’Mary’ expresses who is giving, while ’Susan’ expresses who is receiving
and ’roses’ expresses what is given. The dot product between input words only
captures an overall difference in relations across input words (e.g., xgave-xMary

vs xgave-xSusan), determining the different amounts by which each of these word
should contribute to ygave (i.e., the size of the weight in the weighted sum).
However, it cannot capture the different ways in which each word should con-
tribute to ygave. In practice, I think this means that each input cannot affect the
dimension of ygave differently depending on the context, but can only scale up or
down the entire contribution of the input to ygave. This issue can be overcome
by introducing multiple SA operations in parallel, where each SA operation uses
different/independent weighting in the sum. Next, we can combine all these dif-
ferent ways for xMary and xSusan to influence ygave, by concatenating them into
a single vector and passing this concatenated vector through a learnable linear
transformation, W0 to reduce the dimension back to l.

A nice illustration of multi-head attention can be found in Fig. 1, where the two
attention heads (represented by the color orange and green) capture different
relations between the word ’it’ and all the other words. Specifically, the ’orange’
head seems to focus on the relation between ’it’ and ’the animal’, while the
’green’ head seems to focus on the relation between ’it’ and ’tired’.

Efficient multi-head attention:

Employing h attention heads, implies we end up with h-times more parameters,
greatly reducing learning speed. This is because each attention head, r, needs
its own 3 matrices, Wr

q,W
r
k,W

r
v, to build different/independent weighted sum

(i.e., different ways for the inputs to determine an output yi). It turns out we

4



can achieve multi-head SA, which is approximately as fast a single-head SA.
The way to do this is to project the input, x onto low-dimensional queries, q,
keys, k and values, v, inside each head.

For instance, imagine our input embedding is l = 256, we can project this to
low dimensional queries, keys and values for each head. In particular, if we have
h = 4 heads, we want to project this to a l/h = 64 subspace. The way to do this
is to employ linear transformation for queries, keys and values, Wr

q,W
r
k,W

r
v,

that are 256 × 64 matrices. Therefore, each attention head project the input
onto low-dimensional queries, keys and values. As a result, we end up with 3hl lh
parameters, which is equal to 3l2 parameters (i.e., the number of parameters for
a single attention head).

Efficient multi-head attention implementation:

When we are implementing multi-head attention, there is no need to initialise
3 different Wr

q,W
r
k,W

r
v ∈ Rl× l

h for each head. We can actually initialise three

single matrices Wr
q,W

r
k,W

r
v ∈ Rl×l then, slicing the resulting vectors to apply

separate attention operation (i.e., the dot product). Fig. 4 and Fig. 5 shows two
different implementations of a multi-head self-attention ’forward pass’. Fig. 5
is a less efficient implementations due to a for-loop (i.e., cannot run in paral-
lel), but gives better insights on what is happening. Fig. 4 is a more efficient
way to implement self-attention. Both implementation relies on the same class
initialisation, which can be found in Fig. 3.

Note, depending on the transformer architecture (see Section 3.2), we may need
to change the implementation of self-attention slightly. For instance in encoder-
decoder transformers, we need to pass at least 2 different variables as input to the
forward method of the SelfAttention class (though, for clarity, 3 variables
are typically passed, which are denoted as ”query”, ”keys” and ”values”). This is
because in some of the multi-attention layers of the encoder-decoder transformer
we use the decoder sequence to compute the query for the encoder output, which
in turn is used to compute the keys and values. Therefore, we cannot pass a
single input variable, x , to the forward method in Fig. 4. Additionally, we
typically need to include a mask to performs masked self-attention.

5



Figure 3: Multi-head attention class initialisation.

Figure 4: A sub-optimal implementation of the multi-head attention forward
pass (i.e., cannot be parallelised due to the loop). However, I find this im-
plementation quite useful in illustrating how multi-head attention works, by
dividing the embedding dimension into non-overlapping chunks and, feeding a
different chunk to each attention head.

6



Figure 5: ’Optimal’ implementation of the multi-head attention forward pass.

7



3 Transformers

Transformers aren’t just SA, but they are an entire architecture. At the core of
this architecture is the ’transformer’ block, which can be stacked (e.g., similar to
CNN, which are composed of stacked blocks/layers, each including convolution,
max pooling operations etc.).

3.1 Transformer block

Figure 6: Transformer block, image taken from here.

A transformer block includes a SA operation, layer normalization, a feedforward
layer and another layer normalization (see Fig. 6). Additionally, residual con-
nections are added, typically, one skipping over the SA operation and another
skipping over the feedforward operations. The order of these operations can be
varied, although it is important to include each. At its core, each transformer is
a series of stacked transformer blocks, with some key difference in the way these
blocks are organised relative to the input and target sequences. Broadly, we can
summarise these variations in 3 main types of Transformer architectures.

3.2 Transformer types

We can distinguish 3 main types of Transformer architectures,

1. Encoder-Decoder: This represents the original Transformer architec-
ture (i.e., ”Attention is all you need”). This model comprises of an en-
coder part, which encodes the input sequence into ”context vectors” (i.e.,
vectors encoding the relation across elements of the input sequence). Plus,
this model includes a decoder part, which first encodes the (masked) tar-
get sequence into ”context vectors” and then uses these vectors to query
the encoder output in order to produce the target sequence. This type
of architecture is very useful for language translation, where we need to

8

https://peterbloem.nl/blog/transformers
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


map an input sequence (e.g., in one language) to a target output sequence
(e.g., in a different language).

2. Encoder-only: This transformer architecture only comprises of the en-
coder part. Crucially, this architecture is typically trained to predict miss-
ing elements from an entire input sequence (e.g., words) by randomly
masking elements in the input sequence with the target sequence being
the unmasked input sequence. This is like the typical ’filling the gap’ ex-
ercises that English language courses include. This training regime allows
transformer encoders to acquire a bi-directional understanding of the input
sequence (unlike next-token predictions in decoder models - see below).

3. Decoder-only: This transformer architecture only comprises of the de-
coder part. These models are trained to perform next-token prediction in
parallel. This is done by masking all the following elements in a sequence
for each token and shifting the target sequence by one (i.e., so that for
each token, the transformer tries to predict the following token). As a re-
sult, during training, for each token, the model can only use the elements
in the sequence up to that token to predict the next one (i.e., achieving
a form of auto-regressive training, but in parallel, with no need to iter-
ate through the model predictions). During ’inference’, these models are
auto-regressive where the current model prediction is fed back as an in-
put to predict the next element in the sequence. Note, the same masking
training procedure is typically used for the encoder-decoder transformer.

To get a better idea about these different components, I implemented my own
Encoder-Decoder Transformer, which includes both encoder and decoder com-
ponents. The implementation is based on the original paper ”Attention is all
you need”. You can find my commented code here.

9

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/michele1993/Transformer_from_scratch/tree/main

	Overview
	Self-attention
	Self-attention at the core
	Self-attention in transformers

	Transformers
	Transformer block
	Transformer types


