
The Stochastic Policy Gradient

Michele Garibbo

1 Overview

In the RL literature, we can distinguish 3 main approaches to estimate policy
gradients: Stochastic Policy Gradient (SPG), Deterministic Policy Gradient
(DPG) and, more broadly, model-based policy gradient (e.g., Stochstic Value
gradient Heess et al., 2015). Here, I dive into the Stochastic Policy Gradient
(SPG), making some considerations on why SPG does not apply for off-policy
learning or to deterministic policies.

2 The Stochastic Policy Gradient

The policy gradient objective can be defined as,

J(ϕ) = V πϕ(s) (1)

for s ∈ S. Namely, we want to maximise the value function across all possible
states (note, a similar objective can be defined in terms of the expected value
function across all visited states). For better clarity, I use the notation V π =

V πϕ from now on. By taking the gradient of this objective, we get:

∇ϕJ(ϕ) = ∇ϕV
π(s) (2)

= ∇ϕ

[∑
a

πϕ(a, s)Q
π(s, a)

]
(3)

=
∑
a

(∇ϕπϕ(s, a)Q
π(s, a) + πϕ(a, s)∇ϕQ

π(s, a)) (4)

The term ∇ϕQ
π(s, a) is actually hard to compute explictily. This is because

the policy parameters ϕ not only affect the current action a, but affect all
subsequent visited states (i.e., through the policy), which in turn affect Q itself
(i.e., since Q is recursively defined in terms of the values at future states - i.e.,
Q(s, a) = r(s, a) +

∑
s′ p(s

′ | s, a)V π(s′)). As we will see in the following proof,

1



there us no need to explicitly compute this gradient term during on-policy
learning. Conversely, we will be able to indirectly estimate ∇ϕQ

π(s, a) by
sampling policy gradient updates along the on-policy state distribution. Let’s
continue (for simplify I assume the reward is a deterministic function of state-
action pairs),

∇ϕV
π(s) =

∑
a

(∇ϕπϕ(s, a)Q
π(s, a) + πϕ(s, a)∇ϕQ

π(s, a)) (5)

=
∑
a

∇ϕπϕ(s, a)Q
π(s, a) + πϕ(s, a)∇ϕ

∑
s′,r

p(r, s′ | s, a)(r + V π(s′))


(6)

The second term in the main sum, requires computing the expected gradient of
the reward (relative to ϕ) plus the expected gradient of the next state value.
Nevertheless, the the expected gradient of the reward relative to the (policy)
parameter is zero, simplifying things to,

=
∑
a

∇ϕπϕ(s, a)Q
π(s, a) + πϕ(s, a)

∑
r,s′

p(r, s′ | s, a)∇ϕV
π(s′)


(7)

where I moved the gradient operator inside the sum and over the transition
distribution, which is independent of the policy parameters. It may not be im-
mediately clear why the expected gradient of the reward relative to the (policy)
parameter is zero, since, on an intuitive level, the reward depends on the actions,
which in turn, depend on the policy parameters ϕ. To understand why this is
the case see section 4. Next, we can marginalises the distribution p(r, s′ | s, a)
over the sum of rewards, leading to,

∇ϕV
π(s) =

∑
a

(
∇ϕπϕ(s, a)Q

π(s, a) + πϕ(s, a)

(∑
s′

p(s′ | s, a)∇ϕV
π(s′)

))
(8)

we can further unroll the gradient of state-value term ∇ϕV
π(s′),

=
∑
a

∇ϕπϕ(s, a)Q
π(s, a) + πϕ(s, a)

∑
s′,a′

p(s′)

(
∇ϕπϕ(s

′, a′)Qπ(s′, a′) + πϕ(s
′, a′)

(∑
s′′

p(s′′)∇ϕV
π(s′′)

))
(9)

where I literally applied the definition of ∇ϕV
π(s) found in eq. 8 to ∇ϕV

π(s′),
merging the sums over the next states and actions. In order to fit the equation

2



in one line I drop the conditional on the transition functions (e.g., p(s′′) = p(s′′ |
s′, a′). Based on eq. 9, we can see that if we further unroll this equation (i.e., by
expanding ∇ϕV

π(s′′)), the ’problematic’ gradient term ∇ϕV
π get pushed away.

By making some considerations about the recursive relation in eq. 9, we can
formally re-write it without the problematic gradient term by unrolloing it for ∞
many steps. In eq. 9, for any given next state s′, the terms

∑
a πϕ(s, a)(p

′ | s, a)
denotes the probability of transition from a state s to a state s′ over one time step
based on the policy, pπ(s → s′, 1). This term gets multiplied by the probability
of pπ(s′ → s′′, 1) for all possible s′. Hence, it is computing the probability
of going from s to s′′ over two time steps, pπ(s → s′′, 2). As we unroll, V π,
we can see how this probability terms expand over multiple time-steps - e.g.,
pπ(s → x, k) for k steps. Given some future state x, these probability terms
pπ(s → x, k) weight the corresponding gradient term,

∑
a ∇ϕπϕ(x, a)Q

π(x, a).
Hence, we can re-write eq. 9 as,

∇ϕV
π(s) =

∑
x∈S

∞∑
k

pπ(s → x, k)
∑
a

∇ϕπϕ(x, a)Q
π(x, a) (10)

Since, we are unrolling the recursive relation over ∞ steps, we never need to
compute the problematic gradient term, ∇ϕV

π for any future state x. Now, the
term

∑∞
k pπ(s → x, k) may look intimidating, but it is just the unnormalized

probability of visiting a state x under the policy π (i.e., the unnormalized on-
policy state distribution), given we are in the state s. For episodic cases, the on-
policy state distribution for a state s can be defined based on the number of times
we transition into that state s (from any state s̄) plus the initial probability, h
of starting in that state, normalised by the number of all visits.

η(s) = h(s) +
∑
s̄

η(s̄)
∑
a

π(a | s̄)p(s | s̄, a) (11)

Now, we can normalize this term to get the on-policy state distribution,

dπ(s) =
η(s)∑
s η(s)

(12)

Then term η(x) is exactly what the
∑∞

k pπ(s → x, k) computes given we are
at a state s (i.e., don’t need to sum over all possible routes to x starting at
different states from s, plus for k = 0 in the sum, we account for the probability
of starting in that state x). So, we just need to normalize this term to get the

3



on-policy distribution,

∇ϕV
π(s) =

∑
x∈s η(x)∑
x∈s η(x)

∑
x∈S

η(x)
∑
a

∇ϕπϕ(x, a)Q
π(x, a) (13)

=

(∑
x∈s

η(x)

)∑
x∈S

η(x)∑
x∈s η(x)

∑
a

∇ϕπϕ(x, a)Q
π(x, a) (14)

Since
∑

x∈s η(x) is a (normalizing) constant we can re-write this as,

(15)

∝
∑
x∈S

η(x)∑
x∈s η(x)

∑
a

∇ϕπϕ(x, a)Q
π(x, a) (16)

=
∑
x∈S

dπ(x)
∑
a

∇ϕπϕ(x, a)Q
π(x, a) (17)

We can now apply the log-trick (e.g., see my notes available at link),

=
∑
x∈S

dπ(x)
∑
a

πϕ(a | x)∇ϕ log πϕ(x, a)Q
π(x, a) (18)

= Eπ [∇ϕ log πϕ(x, a)Q
π(x, a)] (19)

Note if we assume we are in some state s0, we can re-write this in terms of the
usual s notation,

∇ϕV
π(s0) = Eπ [∇ϕ log πϕ(s, a)Q

π(s, a)] (20)

3 Considerations on why SPG does apply to off-
policy learning

When we estimate SPG by sampling state-action pairs, we are assuming all
gradients are computed at states s coming from the target on-policy distribu-
tion dπ. This is because, in order to avoid computing the complex gradient
term ∇ϕQ

π(s, a) explicitly, we unrolled Qπ(s, a) through the
∑∞

k pπ(s → x, k)

terms (i.e., the unnormalized on-policy state distribution). Particularly, the∑∞
k pπ(s → x, k) terms assume the states we will visit come from the state

distribution induced by target policy πϕ. This is very important because it is
the reason why we can not apply SPG to off-policy learning and, instead, we
must to rely on an approximate gradient computation for off-policy learning of
stochastic target policies. In off-policy learning, the states are sampled accord-
ing to behavioural policies, β instead of the target policy, πϕ for which we need

4

https://michele1993.github.io/assets/pdf/SGE_notes.pdf


to compute the policy gradient. Therefore, we have now way to sample states
according to the target policy and avoid computing ∇ϕQ

π(s, a) explicitly. In
off-policy learning, Degris et al. (2012) propose to just ignore the ∇ϕQ

π gradient
term, providing some justifications. Namely for some behavioural policy β,

∇ϕJ(ϕ) = ∇ϕ Es∼dβ [V π(s)] (21)

Since dβ does not depend on β, we can bring the gradient inside the expectation,

= Es∼dβ

[∑
a

(∇ϕπϕ(s, a)Q
π(s, a) + πϕ(s, a)∇ϕQ

π(s, a))

]
(22)

Now, we can approximate this gradient by just ignoring the second term in the
sum,

≈ Es∼dβ

[∑
a

∇ϕπϕ(s, a)Q
π(s, a)

]
(23)

This gradient assumes the actions come from the target policy πϕ. Hence, if
we want to evaluate this gradient by sampling actions off-policy, we can use
importance sampling

= Es∼dβ

[∑
a

β(a | s)
β(a | s)

∇ϕπϕ(s, a)Q
π(s, a)

]
(24)

= Eβ

[
∇ϕπϕ(s, a)

β(s, a)
Qπ(s, a)

]
(25)

Note, we can also re-write this gradient through the log-trick,

∇ϕJ(ϕ) = Eβ

[
πϕ(s, a)

β(s, a)
Qπ(s, a)∇ϕ log πϕ(s, a)

]
(26)

4 Considerations on why SPG does not apply to
deterministic policies

First, note that,

Ea∼πϕ
[∇ϕr(s, a)] = 0 (27)

for a stochastic policy, πϕ. This is because the gradient operator, ∇ϕ, is taken
after the action, a, is sampled. Therefore, a must be treated as constant in ϕ

when computing the gradient. In other words, the reward depends on ϕ through
the actions, which means that if the gradient operator is applied after sampling

5



the actions, there is no dependency between r and ϕ in the gradient computation.
Indeed, eq. 27 is not equivalent to computing, ∇ϕ Ea∼πϕ

[r(s, a)], where the
gradient operator is applied before sampling the actions, a and thus requires
accounting for the dependence between r and ϕ through the sampling of a when
computing ∇ϕ (i.e., requirying to use the log-trick or the reparameterization
trick).

Now, for a deterministic policy µϕ, there is a dependence between r and ϕ.
This is because in that case there is no expectation were actions are sampled
before taking the gradient operator, ∇ϕ. Conversely, actions directly depend
on µϕ. Therefore, the (’expected’) deterministic policy gradient of the reward
is not necessary zero and must be computed through the chain-rule,

Eµϕ
[∇ϕr(s, µϕ(s))] = ∇ϕr(s, µϕ(s)) = ∇ϕµϕ(s)∇ar(s, a)|a=µϕ(s) (28)

Now, if you recall, in eq. 6, we had the following expression,

∇ϕV
π(s) =

∑
a

∇ϕπϕ(s, a)Q
π(s, a) + πϕ(s, a)∇ϕ

∑
s′,r

p(r, s′ | s, a)(r + V π(s′))


(29)

Here, I want to show step by step why we could get rid of the gradient of the
reward, r, relative to the policy parameter, ϕ. First, we can bring the sum over
actions inside the parenthesis to get,

=
∑
a

∇ϕπϕ(s, a)Q
π(s, a) +

∑
a

πϕ(s, a)∇ϕ

∑
s′,r

p(r, s′ | s, a)(r + V π(s′))


(30)

Now this can be further expanded to (and marginalising r and s in the respective
joint distributions),

= · · ·+
∑
a

πϕ(s, a)∇ϕ

∑
r

p(r | s, a) r +
∑
a

πϕ(s, a)∇ϕ

∑
s′

p(s′ | s, a)V π(s′)

(31)

if we re-organise things around the sum over rewards we get,

= · · ·+
∑
r

p(r | s, a)
∑
a

πϕ(s, a) ∇ϕr + . . . (32)

= · · ·+
∑
r

p(r | s, a) Ea∼πϕ
[∇ϕr(s, a)] + . . . (33)

6



we know this expectation equals zero and so we are left with,

=
∑
a

∇ϕπϕ(s, a)Q
π(s, a) + 0 +

∑
a

πϕ(s, a)∇ϕ

∑
s′

p(s′ | s, a)V π(s′)

(34)

I think in DPG, we cannot make this step of turning the expected policy gradient
of reward to zero, thus requiring a different derivation as reported by Silver et al.
(2014). In the stochastic policy gradient after putting everything back together
we get eq. 8,

=
∑
a

(
∇ϕπϕ(s, a)Q

π(s, a) + πϕ(s, a)

(∑
s′

p(s′ | s, a)∇ϕV
π(s′)

))
(35)

References

Degris, T., White, M., & Sutton, R. S. (2012). Off-policy actor-critic. arXiv
preprint arXiv:1205.4839.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., & Tassa, Y. (2015).
Learning continuous control policies by stochastic value gradients. Ad-
vances in neural information processing systems, 28.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M.
(2014). Deterministic policy gradient algorithms. International confer-
ence on machine learning, 387–395.

7


	Overview
	The Stochastic Policy Gradient
	Considerations on why SPG does apply to off-policy learning
	Considerations on why SPG does not apply to deterministic policies

