
Stochastic Gradient Estimation

Michele Garibbo

1 Overview

Here, I discuss the two main approaches/tricks to stochastic gradient estimation

in the machine learning literature, 1) The log-trick and 2) the Reparameterization-

trick. The key insight behind both approaches is to re-write the gradient of the

problematic expectation as the expectation of the gradient. As a result, we

can then use a Monte Carlo estimate of the expectation of the gradient (i.e.,

by computing the gradient at different samples). Before introducing the two

approaches, I briefly show under what circumstances computing the gradient of

an expectation is problematic.

2 Introduction of the problem

To start, assume you need optimise the following objective relative to the pa-

rameters θ:

J(θ) = EpX
[fθ(x)] (1)

To optimise this objective, we can compute its gradient relative to the parame-

ters we want to optimise:

∇θJ = ∇θEpX
[fθ(x)] (2)

we can then expand this to:

= ∇θ

∫
pX(x) fθ(x) dx (3)

under certain conditions we can re-write this as (Leibniz integral rule):

=

∫
∇θ pX(x) fθ(x) dx (4)

1

since pX doesn’t depend on θ we have:

=

∫
pX(x) ∇θfθ(x) dx (5)

= EpX
[∇θfθ(x)] (6)

We have transformed the gradient of an expectation into the expectation of a

gradient, which is great. This is great because we can now sample gradients of

fθ to estimate this expectation through Monte Carlo estimates.

Now let’s see what happens in case the underlying distribution pX also depends

on θ,

∇θJ = ∇θEpθ(x)[fθ(x)] (7)

=

∫
∇θ[pθ(x) fθ(x)] dx (8)

=

∫
∇θpθ(x) fθ(x) dx +

∫
pθ(x) ∇θfθ(x) dx (9)

Now we can see the issue:
∫
∇θpθ(x) fθ(x) dx. If the integral cannot be

solved analytically, we no longer have the option to re-write this integral in

terms of an expectation of a gradient, from which we can sample. Two distinct

well-known approaches can be used to solve this issue, the ”log-trick” and the

”reparameterization-trick”.

3 The Log-trick

We can multiply the first (problematic) integral term in Eq.9 by pθ(x)
pθ(x)

, which

gives: ∫
∇θpθ(x) fθ(x) dx =

∫
pθ(x)

pθ(x)
∇θpθ(x) fθ(x) dx (10)

Now we can exploit the gradient of the logarithm function to re-write this as

=

∫
pθ(x)∇θ log(pθ(x)) fθ(x) dx (11)

= Epθ(x)[∇θ log(pθ(x)) fθ(x)] (12)

Now we can put this back with the second integral term in Eq.9 to obtain

(i.e. re-joined the two integrals terms into one integral, and expressed it as an

expectation):

2

∇θEpθ(x)[fθ(x)] = Epθ(x)[∇θ log(pθ(x)) fθ(x) +∇θfθ(x)] (13)

Once again, we transformed a problematic gradient of an expectation into the

expectation of a gradient, which we can sample. Note that in case f(x) does

not depend on θ, this simplifies to:

∇θEpθ(x)[f(x)] = Epθ(x)[∇θ log(pθ(x)) f(x)] (14)

3.1 RL example: REINFORCE

In reinforcement learning, the REINFORCE algorithm is often associated to the

log-trick, since this RL algorithm makes use of it. However, REINFORCE also

relies on the (key) policy gradient theorem, which enables to greatly simplify

the policy gradient computation, before applying the log-trick. Consider the

gradient of the objective in RL,

∇θJ = ∇θEs∼dπ [V π(s)] (15)

where dπ is stationary distribution of the Markov chain induced by πθ,

= ∇θEs∼dπ

[∫
a

πθ(a | s)Qπ(s, a)

]
(16)

= ∇θ

∫
s

dπ(s)

∫
a

πθ(a | s)Qπ(s, a) (17)

Computing ∇θd
π(s) is virtually impossible since we don’t have explicit access

to this distribution and it is very hard to determine how a change in the policy

may affect this distribution. Fortunately, the policy gradient theorem shows we

can re-write this complex gradient as (e.g., see my notes available at link),

≈
∫
s

dπ(s)

∫
a

Qπ(s, a)∇θπθ(a | s) (18)

At this stage, we apply the log-trick,

=

∫
s

dπ(s)

∫
a

Qπ(s, a)∇θπθ(a | s)πθ(a | s)
πθ(a | s)

(19)

which enables us to write the expectation of the gradient also over the policy

(by also merging the two integrals),

Es∼dπ ;a∼πθ
[Qπ(s, a)∇θ log(πθ(a | s))] (20)

3

https://michele1993.github.io/assets/pdf/SPG_notes.pdf

4 The Reparameterization-trick

Consider again the objective:

∇θJ = ∇θEpθ(x)[fθ(x)] (21)

To compute this through another approach, we can reparametrize x (more on

this later) such that x becomes a deterministic function of θ and the stochasticity

comes from a separate random variable ϵ, independent of θ.

= ∇θEp(ϵ)
[fθ(g(ϵ, θ))] (22)

In this way, the underlying distribution p(), no longer depends on θ so that we

can bring the gradient operator inside the expectation as we did in the first

example where the expectation did not depend on θ, Eq.6

= Ep(ϵ)
[∇θfθ(g(ϵ, θ))] (23)

While the ”log-trick” can be applied under most conditions (i.e. pθ has

to be a continuous function of θ), the ”reparameterization-trick” requires the

underlying distribution pθ to be reparametrized into a distribution that we can

sample from and that’s independent of θ. To better grasp this, let’s see how

the reparameterization-trick is actually computed. The reparameterization-trick

relies on the change of variable.

x ∼ pX(x) → ϵ = h(x) x = g(ϵ) where g = h−1 (24)

pϵ(ϵ) = pX(g(ϵ))|dg
dϵ

| (25)

4.1 Example

Assume we want to reparametrize a Gaussian distribution, pX(x) = N (x | µ, σ)
to the variable ϵ = x−µ

σ = h(x) (i.e. a unit Gaussian), which implies x =

µ+ ϵσ = g(ϵ). Based on Eq.25, we have pϵ(ϵ) = pX(µ+ ϵσ) σ since dg
dϵ = σ and

σ is always positive. This gives us:

pX(µ+ ϵσ) σ =
σ√
2πσ2

exp

{
−1

2

(µ+ ϵσ − µ)2

2σ2

}
(26)

4

Which simplifies to:

= N (ϵ | 0, 1) (27)

This suggests that we can sample ϵ ∼ N (0, 1) and then transforms it back to x

based on x = µ+ ϵσ. This is great since sampling ϵ from N (0, 1) is super easy

and the underlying distribution no longer depends on (µ, σ). For instance, if we

have pθ = N (x | θ, σ) and we need to optimize:

∇θEpθ(x)[f(x)] (28)

we can re-write this as:

∇θEpϵ [f(θ + ϵσ)] (29)

This is exactly why when we have a Gaussian policy in RL and we are try-

ing to estimate its expected return, we can simply sample actions according

to µ + ϵσ where ϵ ∼ N (0, 1) and allow Pytorch to backpropagate trough

the sample actions (see example below). However, no all distributions can be

reparametrised into simple distribution from which we can easily sample. That

is why the log-trick is more applicable.

4.2 RL example: ’DPG’ with a stochastic policy

Assume you’re in a RL setting where you need to compute the following (stochas-

tic) policy gradient (i.e. equivalent to deterministic policy gradient, but with a

stochastic policy):

∇θEπθ
[Q(s, a)] = ∇θ

∫
a

πθ(a | s)Q(s, a)da (30)

where θ parameterise your (stochastic) Gaussian policy π = N (a | µθ, σθ) (for

simplicity, we used short-hand notation µθ = µθ(s) and σθ = σθ(s)). Here, we

run in the same problem of needing to compute a difficult integral term, which

we cannot re-write in terms of an expectation (i.e.
∫
a
∇θ(πθ(a | s)Q(s, a))da

). As in the example above, we can re-parametrize a such that it becomes a

deterministic function of θ. Since, a follows a Gaussian distribution, we can

use the same re-parametrization as in the example above, ϵ = a−µθ

σθ
and thus,

a = µθ + σθϵ = g(ϵ). If we apply this change of variable to the Gaussian policy

5

we get the re-parametrized distribution:

p(ϵ) = πθ(g(ϵ) | s)|
da

dϵ
| (31)

=
σθ√
2πσ2

θ

exp

{
−1

2

(µθ + ϵσθ − µθ)
2

2σ2
θ

}
(32)

where π denotes the actual quantity and not the policy (apologies for the over-

loaded notation). Note how all the terms depending on θ cancel out, giving a

distribution independent of θ

= N (ϵ | 0, 1) (33)

Thanks to this re-parametrisation of the policy, we can re-write:

∇θEπθ
[Q(s, a)] =

∫
a

N (ϵ | 0, 1)∇θQ(s, µθ + σθϵ)dϵ (34)

= Epϵ [∇θQ(s, µθ + σθϵ)] (35)

6

	Overview
	Introduction of the problem
	The Log-trick
	RL example: REINFORCE

	The Reparameterization-trick
	Example
	RL example: 'DPG' with a stochastic policy

