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Abstract

Motor learning in the brain depends on both reward and sensory error signals,
but a unified theoretical framework has yet to be established. Here, we build
on reinforcement learning (RL) theory to introduce an ’action-gradient’ model
that integrates reward and sensory error signals into a cohesive learning process.
Firstly, we demonstrate that our model can replicate a wide range of behavioral
patterns observed during motor learning task, involving both rewards and sensory
errors. Secondly, we propose a systems-level implementation of this model in the
brain, involving close interactions between the cerebellum and basal ganglia. We
show the model accounts for classical observations in both the cerebellar and basal
ganglia neuroscience literature, while providing novel experimental predictions.
In summary, our work presents a systems level framework for understanding how
reward and sensory error signals may drive motor learning in the brain.

1 Introduction

Motor commands typically result in two types of feedback: a sensory outcome reflected in the activity
of sensory areas (e.g., vision and proprioception), and a reward, manifested as a subjective assessment
of the utility of these sensations. In the neuroscience literature, sensory outcomes and rewards have
been studied in relation to two distinct (learning) frameworks: reward-based (RBL) and error-based
(EBL) learning [70} 41, [101]. RBL aims to explain learning from rewards and has been related to
stochastic policy gradient computations within the basal ganglia, in line with actor-critic algorithms
from the reinforcement learning (RL) literature [67, 43|53, |5, 4]. Error-based learning, EBL, aims to
describe learning from sensory outcomes and has been associated with the cerebellum and supervised
learning [22, 150} [25]. Traditionally, the cerebellum is believed to provide an internal model of the
world (e.g., forward or inverse model predictions), which learns based on (supervisory) error feedback
from the inferior olives [100, 56, 140, 3].

Crucially, RBL and EBL have typically been regarded as separate learning systems [e.g., 101} 22|
411 121], in line with the traditional belief the cerebellum and the basal ganglia form independent
channels in the thalamus [59, 35, 61]]. This belief has led to the implicit assumption rewards (RBL)
and sensory errors/outcomes (EBL) drive learning of separate policies (motor commands) in the
brain (e.g., one policy stored in the basal ganglia and another adaptive policy stored in cerebellum)
[e.g.,!41L 1901 45) 4]]. However, there is no clear explanation to how the brain may coordinate learning
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Figure 1: [System-level circuit] left-only) Representation of the cerebellar network as a 1 hidden-
layer feedforward neural network [e.g., |8, [71l]. The mossy fibers (MF) convey the cerebellar input,
encoding the motor commands, a and the corresponding (sensory) outcomes, vy, at the end of each
trial/step, t. Granule cells (GC) represent the hidden layer computations. Finally, Purkinje cells (PC)
represent the output layer, providing the action-to-outcome gradient predictions, ZZ This cerebellar
network learns based on the inferior olive (lo) feedback, conveying a mismatch between the (current)
cerebellar output and observed changes in (sensory) outcomes (i.e., Ay) relative to the changes in
motor commands (i.e., Aa) [i.e., exploiting a finite difference gradient estimate 86| (see section|A.6]
for more details). entire) System level implementation of the proposed action-gradient model within
a cerebellar basal ganglia circuit [6]] (see section ). The motor cortex provides latent (motor)
representations, hy_1, to the striatum, while sensory cortical areas provide estimates of the 'directed’
d

sensory error, é. Finally, dopaminergic projections from midbrain dopamine neurons convey RPEs,

d¢ to the striatum. RPes are computed based on expected rewards, v(hi—1) conveyed to midbrain
dopamine neurons by the ventral striatum. lo: inferior olive, C: cerebellum ILN: intralaminar nuclei
of the thalamus.

across separate RBL and EBL polices to solve the same underlying task. For instance, it is not trivial
how information acquired based on rewards generalizes to the error-driven policy and vice-versa
or, how the brain is able to maintain the two policy synchronized (see Appendix [A.2). It is also
not clear why the brain would benefit from storing and updating two separate policies to perform
the same underlying task. This is despite clear evidence the brain is able to smoothly learn from
combinations of sensory and reward signals within the same task [e.g., 41,126} [70,166]. Moreover,
it is now evident the basal ganglia and the cerebellum have much tighter anatomical and functional
connections, discrediting the (traditional) belief that the cerebellum and the basal ganglia form
independent learning channels [e.g., 39} 135,102} [7 12} 13,161} 16, 90]]. For instance, several studies
have found strong disynaptic projections from the cerebellum to the dorsal striatum (i.e., putamen
and caudate) via the intralaminar nuclei of the thalamus (ILN) [e.g., 39,135,102} [13]. Additionally,
the cerebellum seems to influence (dorsal) striatal activity as well as plasticity with observable
behavioural consequences [[13} 73} 1102} 6], highlighting a potential role of the cerebellum in driving
learning in the dorsal striatum. Therefore, we believe the brain may more plausibly integrate reward
(RBL) and sensory error (EBL) signals into a unified teaching signal, rather than each driving learning
of separate policies and, this process may reflect tight basal ganglia and cerebellar interactions.

To support this proposal, we introduce a simple computational model that allows to integrate RPEs
(RBL) and sensory errors (EBL) into unified teaching signals to drive learning. To do so, we build on
previous theoretical work highlighting that RBL and EBL respectively transform RPEs and sensory
errors into ‘action gradients’ (i.e., gradients of a scalar reward/error relative to the actions) [27]. This
shared ‘action gradient’ representation allows the brain to combine RBL and EBL feedback in the
same (action gradient) space, which would not be possible by directly considering RPEs and sensory
errors. The resulting weighted combination of RBL and EBL feedback in action gradient space
provides a unified teaching signal, which the brain may exploit to drive synaptic plasticity of motor
commands (i.e., policy) in response to reward and sensory (error) signals. To support this, we show
the proposed action gradient model is able to reproduce a broad range of behavioural observations on



RBL and EBL interactions [e.g., 41,119 20,199]. Next, we provide a system-level implementation
relating the (action gradient) model to the mounting evidence of tight basal ganglia and cerebellar
interactions during learning [e.g., [13} 73] 102} [7, 12}, 161] (see Fig. E]) ‘We introduce a cerebellar
network, whose predictions allow to compute the EBL action gradient, while we assume dopamine
projections conveying reward prediction errors (RPEs) allow to compute the RBL action gradient [i.e.,
in line with classical RBL models|67, 143,153} 4]]. We show this model combining cerebellar-dependent
(EBL) and dopamine-dependent (RBL) action gradients account for classical observations in both the
cerebellar and basal ganglia neuroscience literature, while providing novel predictions on how the
two structures may interact.

2 Background

Here we briefly describe how RBL and EBL can be characterised by different gradient updates (i.e.,
synaptic learning rules). To better frame these learning rules, we borrow the terminology of the RL
literature. We represent motor commands as actions, a, sampled from a policy, 74, which is encoded
by synaptic weights ¢. The (policy) synaptic weights, ¢, must be updated to to maximize some
(scalar) reward/error signal, r; (i.e., representing successful motor learning), across each time step
or trial, t. In line with previous work [53} 27], we assume a Gaussian policy generates the actions,
mg(ar | s¢) = N(ap | prg(st), Lp(st) + Lhixea), Where the mean, 114, and (diagonal) covariance, X4,
are the outputs of some motor area with synaptic weights, ¢ (i.e., the synaptic weights of the area
encoding the policy), which receives some cue/state, s, as input at each trial/step (see Appendix[A.3|
for further details on the employed policy parametrizations). The term >gx.q is used to introduce
some constant irreducible motor noise [i.e., a small amount of motor noise is always present in human
behaviours |20]. Below, we present how RBL and EBL adapt the (synaptic) weights of the (Gaussian)
policy mean, /14 to maximise the reward/error signal, 7 (see section for the Gaussian variance
update, 035)' We do so in terms of ballistic (feedforward) motor movements, since this is most relevant
for the motor adaptation paradigms we model subsequently. Therefore, each action, a;, results in a
single reward, r; and a terminal (sensory) outcome, y; (i.e., equivalent to terminal states in RL jargon)
for each trial ¢. Nevertheless, these computations can easily be extended to sequential (feedback)
tasks (e.g., by introducing a value function). For simplicity, we present all gradients computations in
terms of 1-dimensional actions performed in a 1-dimensional sensory space, although this can easily
be extended to higher dimensional cases (e.g., line drawing task).

Reward-based Learning. Traditionally, RBL is associated to stochastic policy gradient updates
(67,15 1531 143]],

Er, [A¢ " o Er, [V log(mg(ay | 51)6] (1)

where A¢; denotes the estimated change to the synaptic weights responsible for the (mean) actions
(i-e., the policy mean), while 6; = r; — vy (s;) encodes the RPEs, for some observed reward signal,
r¢, and the corresponding expected reward, vg(s;), given some sensory cue/state, s;. Note, here ¢
could denote the time step or the trial number. RBL has closely been related to the function of the
Basal Ganglia. The actor, 7y, is often associated to the dorsal striatum, which appears key for action
selection [43]169]]. Conversely, the ventral striatum is thought to play the role of a critic, vy, (i.e.,
providing expected rewards) given its more prominent role in value-estimation rather than action
selection [[63},[67]. Finally, striatal dopamine projections are thought to convey RPEs, 6;, needed to
learn both the actor and the critic [43]]. This is in line with the extensive evidence of striatal dopamine
activity increases in response to unexpected rewards/cues and suppresses in face of unexpected lack
of rewards [83, 163}, [37].

Error-based learning. EBL is typically described by the following synaptic weight update [30} [1}
44,1271,

EBL dry dyy dpg
where A¢; again denotes the estimated change to the synaptic weights at the trial ¢, the term y;
represents the terminal (sensory) outcome in response to the action, a;, while r; represents some
(scalar) error/reward signal (often denoted by e). Again, in RL jargon, the (sensory) outcome, ;, can
be thought as the terminal state, sy and each trial, ¢ can be thought as an entire episode. In motor
learning paradigms, this error/reward signal is typically computed as the squared distance between



the terminal, y;, and the desired, y*, (sensory) outcomes at any given trial, ¢ (i.e., 7y = (y(as) — y*)2)
(e.g., the distance from the goal state after taking action, a;). In eq.[2} the operator g—; represents a
"directed’ sensory error, encoding how to change the sensory outcome, y, to reduces the scalar error,

r (e.g., signaling to throw more to the right to hit a target in a dart game). The operator % provides
an action-to-outcome ’interface’, enabling to map the (directed) sensory errors, Zl—;, to motor changes

(e.g., instructing how to change the action to throw more to the right). Finally, % determines how

to change the synaptic weights to change the (mean) action in the desired direction. Note, to correctly
estimate the product g—; %f, the reparameterization trick can be used in case the relation between
actions, a, and the policy parameter, w4, is stochastic [46]] (e.g., a with Gaussian policy).

3 Action-gradient model: Unifying reward- and error- based learning

For a Gaussian policy, the RBL update (eq. [I)) can be factorised into two terms, 1) an "action gradient’
term, %, which should be regarded as a teaching signal, instructing how the current action should
change to improve performance and, 2) a gradient term, s which drives plasticity of the synaptic

weights, ¢, responsible for the (mean) action [see 27, 53],

dre dis _ 500, — ditg
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where again ¢ denotes the RPE for the action, a. Crucially, the EBL update (i.e., eq. [2) takes a

similar form, where the teaching signal (i.e., the action gradient term) is composed of two sub-terms,
% = %%, to model the explicit dependency of the update on the sensory outcomes y. This
similarity allows us to perform a weighted combination of the RBL and EBL teaching signals in

action gradient space to drive synaptic plasticity of a shared motor area, ¢ (i.e., encoding the policy),
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Mixed action gradient

where 8 € [0, 1] controls the mixture between the two action gradient terms (i.e., teaching signals),
encoding the uncertainty over the EBL action gradient term (i.e., the higher the uncertainty the closer
should 3 be to zero). Crucially, the uncertainty over the EBL action gradient should directly relate
to the uncertainty over the sensory outcome, y (i.e., the quality of the sensory feedback). This is
because the EBL action gradient directly depends on the sensory outcome, y. At the extreme case
where no sensory information is provided, but only a binary success/failure reward signal, the EBL
action gradient cannot be estimated, implying learning should exclusively be driven by the RBL
action gradient (i.e., 8 = 0) [e.g.,[88L[95]. At the other extreme, where ‘perfect’ sensory information
is available, the EBL action gradient should provide the optimal learning strategy (i.e., 8 = 1) [e.g.,
see 27,132, |15)]. Beyond these two extremes, the brain seems to rely on a mixture of RBL and EBL,
where the amount of EBL contribution negatively relates to the uncertainty over the sensory feedback
[e.g., 99,110,191, 141]. This represents a key prediction of the proposed (action gradient) model,
which uses the 8 hyper-parameter to model a RBL-EBL mixture in terms of the corresponding action
gradients. In summary, the update in eq. (@) proposes that the brain unifies EBL and RBL at the level
of teaching signals (i.e., action gradients) to drive synaptic plasticity of shared motor areas, ¢ (i.e., a
shared policy) instead of each driving learning at separate motor areas (i.e., at separate RBL and EBL
policies). It is worth stressing this update (eq. 4] is consistent with a 3 factor learning rule of synaptic
plasticity [51]], where the "mixed-action gradient" can be thought as an error signal. In Appendix
we provide further information on how each component of this Mixed action gradient is computed in
practice.

4 System-level circuit

Here, we explore how our action-gradient mechanism might provide a framework to explain the
mounting evidence of tight cerebellar and basal-ganglia interactions [[13} 73102, 7, [12,|61]. In line



with the classical view of basal ganglia [43| 4] 167]], we assume that the dorsal and ventral striatum,
respectively, play the role of policy and critic, while midbrain dopaminergic projections convey RPEs,
d, to both dorsal and ventral striatum [83], [67]]. These dopamine-dependent RPEs appear to drive
cortico-striatal plasticity at the dorsal striatum, in line with the RBL action gradient [67} [77, 143} [11]]
(note, the action term (a — p) is typically assumed to be available at the dorsal striatum post-synapses
53)). Cortico-striatal synapses may convey (latent) representations, h, of actions (e.g., "motor plans")
from the primary motor cortex (M1) to the striatum [22} 211 58 29]]. In turn, the dorsal striatum
learns to select the optimal actions (i.e., acting as a policy) based on the dopamine-dependent RPEs
(while the ventral striatum learns the expected value of each plan) [4} 43]].

Crucially, our proposed action gradient model may extend this view, by integrating well-documented
cerebellar-dependent signals into this learning process [e.g., (6113731 102]. The model (eq.[) predicts
dorsal striatal plasticity (i.e., the policy synaptic weights, ¢) should not only be driven by dopamine,
but also by cerebellar-dependent signals, reflecting a combination of dopamine-dependent RBL and
cerebellar-dependent EBL feedback (i.e., action gradients). Specifically, the EBL action gradient is

composed of two quantities, an action-to-outcome gradient, Z—Z, and a ’directed’ sensory error g—;
(see eq. . We propose the cerebellum learns to predict the action-to-outcome gradient, %’ in line

with the assumption this quantity must be learned from experience [see |1, 144} 38| 27]. We denote the
cerebellar predicted action-to-outcome gradient as %, where % ~ j—z. We think the cerebellum is
well placed to learn the action-to-outcome gradient, %, given its key role in encoding internal models
of the world 211100} 50, (711 18] and its importance to EBL [50 (94} 92} 42]. Conversely, we assume
(sensory) cortical areas estimate the "directed’ sensory error %, depending on the sensory modality in

which the task sensory outcomes are perceived (e.g., in case of abstract errors/rewards, this quantity
may be computed by the prefrontal cortex). We denote the (cortical) prediction of ’directed’ sensory

error as Z—Z, where 94 ~ g—;. Both the cerebellar and the cortical predictions converge to the dorsal

dy
striatum, the former ‘\]/ia targeted disynaptic projections going through the intralaminar nuclei of the
thalamus (ILN) [e.g., [102| 73} 6], while the latter via the well-known cortico-striatal projections
[72]. The two predictions provide the necessary information to compute the EBL action gradient and
influence cortico-striatal plasticity together with the dopamine-dependent RBL action gradient (i.e.,
in line with eq.[d). In support to this proposal, cerebellar projections seem to target (dorsal striatal)
medium spiny neurons, which also possess D1 and D2 dopamine receptors [102] (i.e., enabling
cerebellar and dopamine feedback to converge within the same neurons). In summary, this circuit
(see Fig.[T)) could drive motor learning in the dorsal striatum (policy) based on a mixture of cerebellar-
and dopamine- dependent teaching signals, reflecting RBL and EBL mechanisms, as described by the
action-gradient framework in eq. (). Note, our action-gradient framework assumes some mechanism
to regulate the dopamine-dependent (RBL) action gradient in relation to the cerebellar-dependent
(EBL) action gradient at the dorsal striatum (i.e., the 3-weighting mechanism in eq. ). We speculate
this mechanism could take place implicitly, through (synaptic) competition mechanisms driven by the
magnitude of each gradient or, explicitly, with the cerebellum directly controlling midbrain dopamine
release at the striatum, as some evidence indicates [64, 165,97, [103]].

5 Results

5.1 Action-gradient model predictions of behavioural data

In this section, we show our action-gradient model (section [3) is able to replicate a series of be-
havioural findings on RBL and EBL interactions during targeted arm reaching experiments. These
experiments are primarily based on the seminal paper by Izawa and Shadmehr [41] on RBL and EBL
interactions in humans. We model the RBL and EBL conditions by respectively setting 3 = 0 and
B = 1in our action-gradient model [respectively denoted as RWD and ERR in the original paper
41]). This is because S = 0 implies synaptic plasticity is exclusively driven by RPEs (i.e., RBL),
while 8 = 1 implies synaptic plasticity is exclusively driven by sensory errors (i.e., EBL) (see eq.[d).
Conversely, we found 5 = 0.4 could best predict Izawa and Shadmehr [41]]’s result on the *Mixed’
condition, where both rewards and sensory errors are likely driving learning (i.e., denoted as EPE
in the original paper). The task set-up is the same targeted reaching task as described by Izawa and
Shadmehr [41]], where the agent needs to adapt to a visuomotor perturbation, which is gradually
increased over a series of trials (see Appendix for further details).
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Figure 2: a-b) performance comparison between our action-gradient model and human experimental
data during EBL (blue), RBL (red) and a mixture of the two (green) (the human data were re-plotted
from [41)] using WebPlotDigitizer [[79]). ¢) model predicted change in motor variability as we move
from purely RBL teaching signals (3 = 0) to higher contributions from the EBL teaching signals (i.e.,
higher B-values)d) model predicted change in motor variability during RBL in response to either
negative (purple) or positive (yellow) RPEs. e-f) action-gradient model’s generalisation performance
(e) as well as training error (f) across EBL, RBL and a mixture of the two. g-h) EBL performance (g)
as well as EBL action gradient accuracy (h) across different levels of sensory noise. Error bars are
computed based on performances on five random seeds.

Motor variability changes Fig.[2b shows our action-gradient model is able to predict human motor
variability changes across RBL, EBL and a mixture of the two, while correctly predicting the same
amount of (human) motor adaptation across the 3 conditions (Fig.[2h). Note, while the model predicts
full adaptation to the (8-degree) perturbations across the 3 conditions, humans seem to slightly
under-adapt across all the conditions. This is may be due to humans having a slight bias towards a
side of the target [e.g., [30]. Crucially, from the RL literature, we know the RBL action gradient to be
higher variance (i.e., noisier) than the equivalent EBL action gradient (known as model-based policy
gradient in RL jargon) [32,[27]. Therefore, our action-gradient model suggests changes in human
motor variability across RBL-EBL conditions may be explained by the variability of the different
action gradient estimates (i.e., the variability of RBL and EBL teaching signals as well as any mixture
of the two). The model also allows to obtain continuous predictions on how quickly motor variability
may decrease as we move from purely RBL teaching signals (i.e., 8 = 0) to higher contributions
from the EBL teaching signals (i.e., higher S-values, see Fig. 2k).

RPEs drive motor variability During RBL, human motor variability has been shown to increase in
response to negative RPEs, while decreasing in response to positive RPEgs, [i.e., efficiently controlling
the amount of exploratory behaviours through motor variability 19} 20]. Crucially, our action-gradient
model is able to replicate these changes in (human) motor variability in response to different RPEs.
To demonstrate this, we show the model predicts the action variability to increase in response to
negative RPEs, while decreasing in response to positive RPEs (see Fig ) (i.e., we fixed the RPEs to
always be negative or always be positive, and set 5 = 0 to model RBL only). This patterns follows
directly from how the RBL action gradient changes the action variance in response to positive and
negative RPEs (see Appendix [A.7).

Target Generalisation Fig.[2k shows our action-gradient model predicts RBL to achieve poorer
generalisation to novel targets compared to EBL. The mixture of RBL and EBL teaching signals (i.e.,
action gradients) achieves intermediate generalisation performance (i.e., the generalisation error is
in between the RBL and EBL conditions). Crucially, the same generalisation pattern is observed in
humans across the three conditions [41]. To obtain the mixture of RBL and EBL teaching signals,
we used the same (-value as for the human motor variability results described above (i.e., 3 = 0.4).
This accounts for the fact that both the human motor variability and generalisation results were based
on the same task set-up with the same quality of sensory information [i.e.,41]. Fig.[2f shows that the



poorer generalisation performance of RBL arises from the fact that during training RBL converges to
a poorer policy compared to EBL and the Mixed condition (i.e, in terms of training errors). Finally,
we wanted to get some insights on why human subjects tend to rely less on EBL adaptation in the
presence of poorer sensory feedback [99. 10| 91l 41]]. Fig. Zh show the EBL action gradient becomes
increasingly less accurate as the sensory noise increases, impairing performance (Fig. 2g) [e.g.,
99]. This was measured as the 12-norm between the ground truth gradient and the estimated EBL
gradients across different levels of sensory noise. We explore this further in the "Optimal cerebellar
and dopamine learning combinations" section below.

5.2 Action-gradient model of cerebellar and basal ganglia interactions

Here, we want to explore the (action-gradient) model ability to explain well-known cerebellar
and basal ganglia observation during motor learning, while exploiting the model to make novel
experimental predictions. Following the system-level circuit described in section ] we assume
dopaminergic (DA) and cerebellar (CB) signals respectively enable to compute the RBL and EBL.
action gradients. We use these two signals to drive policy learning (e.g., at the dorsal striatum) in line
with the action gradient computations proposed in eq.[d] We model the cerebellum with a 1 hidden
layer feedforward neural networks, which learns to predict the action-to-outcome gradient estimates,
% form the current action, a and the (observed) sensory outcome, y [e.g., 21] (see Appendix
for more details). These cerebellar predictions are then used to estimate the EBL action gradient

together with (cortical) estimates of the ’directed’ sensory errors, denoted as g—; which we assume to

be readily available from sensory information. The choice of architecture for the cerebellar module is
consistent with previous work [e.g., |8, [71] and, provides a simplified model for the highly uniform
structure of the cerebellum [851[93]. Conversely, we assume dopamine conveys RPEs, ¢, allowing
to compute the RBL action gradient [43] 53| 4, 167]]. Based classical cerebellar and basal ganglia
studies of motor learning 80,92, 142 |33| 28 |82]], we test our model on several motor tasks, involving
a (non-linear) kinematic model of the arm [17] (see Appendix [A.5).

Visuomotor rotation task Here, we test our (action-gradient) model in a classical cerebellar-
dependent adaptation task, in which an agent needs to adapt to a visuomotor rotation that is suddenly
applied during targeted arm-reaches [e.g.,150, 157, 42, [75]]. We employ the same task set-up as Tseng
et al. [92]], for healthy controls vs cerebellar patients (see Appendix [A.4.2]for further details). Fig.[3h
shows the model accurately reproduces the difference in adaptation between healthy controls and
cerebellar patients, doing so exclusively in terms of how the RBL and EBL action gradient esti-
mates drive performance. Specifically, the model predicts healthy controls’ performances are best
captured when the cerebellar-dependent EBL action gradient drive learning fully (i.e., CB-driven,
£ = 1 in eq.[), achieving lower residual errors (i.e., optimal strategy). Conversely, the model
predicts cerebellar patients’ poorer performances are best captured when the dopamine-dependent
RBL action gradient drives learning fully (i.e., DA-driven, 8 = 0 in eq. d). This finding suggests
cerebellar patients’ deficits may prevent them from exploiting the (optimal) EBL action gradient,
forcing them to rely on the (sub-optimal) RBL action gradient (i.e., DA-driven), resulting in higher
residual errors. On the flip side, this finding implies cerebellar patients may still be able to learn
from the dopamine-dependent RBL action gradient, as some evidence seems to suggest [e.g., |88, [89].
Crucially, our model also allows us make predictions on how adaptation performance may change as
the contribution of the cerebellar-dependent (EBL) action gradient increases over the contribution of
the dopamine-dependent (RBL) action gradient (i.e., by increasing /3 in our model). Fig.[3b shows
the residual error should decrease smoothly as the cerebellar contribution increases, peaking when
the cerebellum-dependent (EBL) action gradient drives performance fully. This model prediction
may explain why cerebellar symptom severity appears to positively correlate with adaptation errors
[92], suggesting less-severe cerebellar patients may still be able to exploit some of the contribution
of the cerebellar-dependent (EBL) action gradient instead of having to rely on dopamine feedback
exclusively.

Visuomotor reversal task Here, we show our action gradient model is able to reproduce human
control and basal ganglia patients (i.e., Parkinson’s and Huntington’s) data on a visuomotor reversal
task based on Gutierrez-Garralda et al. [28] (see Appendix for further details). Unlike the
previous (rotation) task, visuomotor reversal tasks reverse sensory (visual) feedback in a way that
sensory errors become detrimental to learning [e.g., worsening performance with learning, (304152} (96].
For this reason, successful adaptation to visuomotor reversal tasks should not be driven by sensory
errors (EBL), but by reward signals (RBL) [e.g.,128, 182, 27] (i.e., providing an opposite test to the
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Figure 3: a-b) Sensorimotor rotation task. c-d) Sensorimotor reversal task. e-g,i-k) Model predictions
on a standard reaching task with a perturbed cerebellar component. h) Optimal combination of RBL
and EBL action gradients across sensory noise levels. In (a) the human control and CB patients
were re-plotted from [92l], while in (b) the human control and BG patients were re-plotted from [28]],
using WebPlotDigitizer [79]. CB: cerebellum, BG: basal ganglia. Error bars are computed based on
performances on five random seeds.

visuomotor rotation task, where cerebellum-dependent EBL appeared to be the optimal strategy).
Fig. Bk shows our action gradient model accurately reproduces human controls’ successful adaptation
to the reversal task [i.e., 28]], by exploiting the dopamine-dependent RBL action gradient (i.e.,
DA-driven, # = 0). Crucially, we found the model was able to reproduce the poor performance of
basal ganglia patients in the reversal task, using 8 = 0.7 (see Fig.3f). This high /3 value (i.e., the
max is 1) suggests learning in basal ganglia patients was only marginally driven by the (optimal)
dopamine-dependent RBL action gradient (i.e., DA-deficiency), unlike healthy controls who fully
exploited the (optimal) dopamine-dependent RBL action gradient to solve the task. This finding is
strikingly consistent with the well-know dopamine deficiencies in Parkinson’s patients [16} (76} [81]]
and in later-stage Huntington’s patients [14]. Finally, the model predicts residual errors should
positively correlate with dopamine deficiency (i.e., symptoms severity) in visuomotor reversal tasks
(see Fig.[3d). To our knowledge, this prediction remains to be tested.

Dysfunctional cerebellar predictions during reaching In the visuomotor rotation task, we found
cerebellar patients’ deficits were best describe by a failure to access the (optimal) cerebellar-dependent
EBL action gradient (i.e., being limited to the sub-optimal dopamine-dependent RBL action gradient).
Nevertheless, our action gradient model also allows us to make predictions on what happens when the
EBL action gradient is still accessible for learning, but it is computed based on erroneous cerebellar

predictions (i.e., erroneous action-to-outcome gradient estimates, % #+ %). For instance, this could
happen when the cerebellum is still present, but it is sending erroneous predictions due to anatomical
or functional impairments. In Fig. 3] we denote this condition as "dysfunctional-CB" driven and
investigate it in a standard reaching task, where the agent had to reach for a target under normal

conditions. We found altering specific components of the cerebellar module predictions, %, led to



very specific motor deficits (see Fig. Bk.f.i,j) (see Appendix [A.4.3]for further details). Strikingly,
all the deficits seem consistent with well-known dysmetria symptoms in cerebellar patients [e.g.,
hypermetria, hypometria|33} 155, |34]]. Finally, the model predicts dysmetria symptoms should improve
(i.e., achieving lower dysmetria scores and reaching errors) if learning relies on dopamine at the
expenses of the the dysfunctional cerebellar contribution (dysfunctional-CB). Therefore, cerebellar
patients’ dysmetria symptoms may improve by purposely engaging in reward-driven learning regimes
(see Fig.[Blg.k). Although this key prediction requires testing, some evidence suggests this may be the
case [e.g., 189]|, potentially opening the way for novel rehabilitation interventions.

Optimal cerebellar and dopamine learning combinations A key prediction of our action gradient
model is that the brain should rely on a (/3-) weighted combination of the cerebellar-dependent (EBL)
and the dopamine-dependent (RBL) action gradients, depending on the amount of uncertainly over
the sensory outcome, ¥ (i.e., the higher the uncertainty, the lower reliance on cerebellar-dependent
EBL). To probe this prediction, we investigate which RBL-EBL gradient combinations lead to
optimal learning performance across different levels of noise over the sensory outcome, paired
with (noise-free) reward signals (i.e., in terms of the optimal 5 combination of the RBL. and EBL
action gradients). The exact experimental details are reported in Appendix Fig.Bh shows
the optimal action gradient should reflect a combination of both the cerebellar-dependent (EBL)
and the dopamine-dependent (RBL) action gradients across most levels of sensory noises (i.e.,
0 < Optimal 5 < 1 for most sensory noise levels). Crucially, as the sensory noise increases, the
contribution of the EBL action gradient should rapidly decrease in favour of higher contributions
from the RBL action gradient. This is because as the sensory (outcome) noise increases, the accuracy
of the EBL action gradient decreases, but this inaccuracy can be mitigated by the contribution of the
RBL action gradient. In the ‘real’ world sensory information is encountered with different degrees of
noise, implying the brain may greatly benefit from combining the two actions gradients, reflecting
close basal ganglia and cerebellar interactions [e.g., 1373116} [102]]. This prediction should be tested
in a motor learning task where the quality of the sensory outcome is varied continuously together with
(noise-free) reward signals. As the the quality of the sensory outcome decreases learning should move
from cerebellar-dependent towards dopamine-dependent, reflecting an increase in motor variability.

6 Discussion

The paper introduces a novel computational framework to explain how the brain may combine
sensory (EBL) and reward (RBL) signals into a unified learning process. We relate this model to
a system-level circuit, which may help understand the mounting evidence of tight the cerebellar
and basal ganglia interactions [[13} (73102, [7, 12, |61]. We show the model reproduces classical
observations in both the cerebellar and basal ganglia neuroscience literature [e.g., [92| 28] 33| 34]],
while providing novel predictions on how the two structures may interact. In particular, the model
predicts the dorsal striatum (policy) may not only learn based on the well-known dopaminergic
projections (RBL) [4, 43 |53]], but also from cerebellar feedback combined with (cortical) sensory
information (EBL) [e.g., [13]. Although this prediction requires precise testing, Chen et al. [13]
showed cerebellar stimulation affect dorsal striatal plasticity with a very short latency, which may be
consistent with a trial-to-trial learning mechanism. Additionally, we show perturbing the cerebellar
predictions within our model leads to deficits that are strikingly consistent with classical cerebellar
motor deficits [e.g., hypermetria, hypometria |33 [55] 34]].

Our action gradient model may explain the roles of cerebellar and dopamine feedback beyond just
policy learning in the dorsal striatum. Depending on the task, this model could apply to other areas,
encoding a policy and receiving dopaminergic as well as cerebellar projections together with (cortical)
sensory feedback. For instance, for higher-level motor function, the policy may be encoded in the
motor cortex [e.g. 48168l |54} [2]] and for some cognitive tasks, the policy may be encoded in the
prefrontal cortex [9]. Therefore, cerebellar and dopamine feedback may respectively convey the
EBL and RBL action gradients to drive policy learning at those areas in line with our proposed
action gradient framework (i.e., eq. ). In this regard, cerebellar and dopamine feedback have
been related to synaptic plasticity at different cortical areas, including the primary motor cortex
[dopamine-driven plasticity, 36162} [78][cerebellar-driven plasticity, (74} 131} /47] and the prefrontal
cortex [dopamine-driven plasticity, |84} 24| |[18] [cerebellar-driven plasticity, 160,98 23]].

A main limitation of the present paper is that we replicate only behavioural, rather than also neural
data. This limitation primarily arises due to the scarcity of neural data on basal ganglia and cerebellar



interactions during learning. As we briefly touch below, the model makes clear predictions on these
interactions, which should drive future experimental recordings to test the proposed model. A second
limitation is treating 3, which describes the relative importance of the RBL and EBL action gradients,
as a hyperparameter. Although the primary scope of the paper is to show that a weighting combination
of the two action gradients can explain how the brain lean from sensory and reward signals, future
work should unpack the exact mechanism enabling the brain to do so.
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A Appendix

A.1 Line drawing task

Here, we want to show our action gradient model can support learning in a more complex task,
involving a recurrent policy [e.g., stored in the motor cortex [87]. In this task, a recurrent policy [e.g.,
encoded in the motor cortex |87]] needs to learn to control an arm to draw six target (straight) lines.
Each line must be drawn over 10 time steps, ¢, given an initial cue provided at ¢ = 0 only. The
experimental details are further described in Appendix [A.4.5] Fig. @b shows that when the policy
synaptic plasticity, A, is exclusively driven by the dopaminergic projections (i.e., conveying RBL
action gradients) with 0% cortico-cerebellar contribution (i.e., conveying EBL action gradient), the
resulting policy presents very high ataxia. Additionally, we also observe slower learning performance
(Fig.[p, in red). Conversely, as we increase the percentage of cortico-cerebellar contribution to the
(policy) synaptic plasticity, the ataxia score decreases dramatically as well as achieve faster learning
(Fig.[p, in green and blue). Interestingly, we find the best policy, in terms of lowest ataxia score, is
achieved when learning is primarily driven by the coritico-cerebellar signals (i.e., 75%) with some
contribution by the dopaminergic projections (i.e., 25%). Although this finding requires further
exploration, we speculate it may provide some insights on why the brain relies on close cerebellar
and basal ganglia interactions during learning, instead of relying on either one exclusively [12]].

Fig. i shows when learning is driven by cortico-cerebellar signals (i.e., EBL), task performance
is not affected by the lack of continuous sensory feedback (e.g., sensory feedback is only available
every 2 or 3 time steps). This is also the case when learning is driven by "Mixed’ cortico-cerebellar
and dopamine signals (i.e., "Mixed’ condition, 8 = 0.5). Conversely, when learning only reflects
dopamine-dependent RBL with no cerebellar contribution (DA-only), performance drastically wors-
ens in the absence of continuous sensory feedback. This finding suggest cortico-cerebellar feedback
may be crucial to maintain learning in the absence of continuous sensory feedback, even when learn-
ing is partially driven by dopamine-dependent feedback (i.e., "Mixed’ condition). To our knowledge,
this prediction requires testing, although it aligns with the broad role of the cerebellum in facilitating
learning [71} [8]. Finally, Fig. dd-e show both dopamine-dependent (d) and cortico-cerebellar depen-
dent (e) activity should decrease over the course of learning, reflecting task acquisition. Interestingly,
dopamine-dependent activity seems to present higher variability relative to the cortico-cerebellar
dependent activity, reflecting the higher variability of the RBL action-gradient relative to the EBL
one. To our knowledge, this prediction requires testing.

A.2 Implausibility of RBL and EBL training separate policies

In this section, we want to investiagte the possibility that the brain possesses two separate policies for
RBL and EBL (e.g., one stored in the cerebellum and another one stored in the basal ganglia), which
are only combined at the action selection stage [e.g., 411190]. In particular, we assess two main ways
in which the brain may combine separate RBL and EBL policies. In the first case, the output of the
EBL and of the RBL policies could be summed to give the current action (i.e., a = a8 + aRBL),
In the second case, the two policy outputs could be combined through a weighted sum, enabling to
prioritise one policy over the other when selecting the current action (i.e., a = o a8 + (1 — ) aRBL).
For instance, in the presence of reward signals, but no sensory feedback, the brain could exclusively
rely on the (most updated) RBL policy (i.e., « = 0). Conversely, in the presence of optimal sensory
feedback, the brain could prioritise the EBL policy (i.e., & = 1). Note, this weighted-sum case is in
principle similar to what we proposed in eq. {4} but where the weighted sum occurs at the level of
actions (based on two separate polices) instead of at level of teaching signals (i.e., action gradient).
We test these two-policy set-ups in a targeted arm reaching task, where the agent needs to learn to
reach for a target location under optimal conditions (i.e., minimal sensory noise and no perturbations).
This task is based on standard sensorimotor adaptation paradigms used to probe motor adaptation in
humans [e.g., 41,130, 49]. It requires the agent to learn to output the correct reaching angles to reach
a series of targets across several trials. The targets are placed at different angles from the agent, thus
requiring the agent to learn a different reaching angle for each target (see Appendix [A.4.T]for further
details on the model).

Fig.[5h shows that combining the two policies through a weighted sum (i.e., v — weighting) leads to
better performance than performing a simple sum of the two polices’ outputs (i.e., No av — weighting).
This is because for the given task with optimal sensory feedback, EBL seems to be the optimal
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Figure 4: a-b) Training accuracy (a) and ataxia score (b) across different percentages of cortico-
cerebellar (CC) contribution to learning on the line drawing task. ¢) Task performance for different
temporal feedback across dopamine-dependent learning (DA), cortico-cerebellar learning (CC)
and a mixture of the two (Mixed). d-e) Dopamine-dependent (d) and cortico-cerebellar (e) activity
across learning (i.e., in terms of the norm of the respective RBL and EBL action gradients). f-j)
Resulting line drawings across different percentages of cortico-cerebellar (CC) contribution to
learning. DA: dopamine-dependent learning, CC: cortico-cerebellar learning, Mixed: dopamine and
cortico-cerebellar dependent (i.e., § = 0.5).
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Figure 5: Learning performance for separate EBL and RBL policies, where the two policies are
combined by either a simple sum (No o — weighting) or based on a weighted sum (oo — weighting).
a) the weighted-sum approach achieves better learning performance than the simple sum approach.
b) the weighted-sum approach achieves lower motor variability than the simple sum approach. c-d)
the weighted-sum approach suffers from a drop in performance whenever there is a gradual (c) or
sudden (d) change in sensory vs reward feedback.

learning strategy and, the weighted-sum approach (o — weighting) is able to suppress the contribution
of the (sub-optimal) RBL policy (i.e., by setting &« = 1). The RBL policy cannot be suppressed in the
simple-sum approach (No o — weighting), negatively affecting the performance. Furthermore, Fig. [5p
shows that combining the two policies through a simple sum leads to higher motor variability than
performing the weighted sum, due to the impossibility of the simple-sum approach to suppress the
extra motor variability induced by the RBL policy. Indeed, we later show that without assuming some
weighted combination of RBL and EBL contributions, it is not possible to explain the experimental
evidence that (human) motor variability changes depending on the quality of the sensory feedback
[41]]. Therefore, if the brain holds two separate policies for RBL and EBL, then the brain likely rely
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on a weighted sum of the two polices (i.e., @ — weighting), instead of a simple sum. However, we
now show this two-policy weighted-sum approach (o — weighting) is also unlikely to take place in
the brain. To show this, we assume a reaching setting where only the rewards are initially available
with no sensory feedback (i.e., & = 0). After some initial trials, we either abruptly (Fig. [5k) or
gradually (Fig. [5{d) introduce sensory feedback (i.e., marked by an increase in «), thus enabling the
EBL policy to contribute to the actions. Crucially, Fig. [Sk-d shows that whenever there is a change
in the sensory feedback (i.e., altering the contribution of each policy), the performance suddenly
worsens. This occurs because the two policies are no longer synchronized. Crucially, the brain is
exposed to constant changes to the quality of sensory feedback in the external world. Additionally,
performance should likely improve if better sensory feedback becomes available. Therefore, we
believe it is implausible the brain holds two separate policies, one trained with EBL and another
trained by RBL. We think it is more plausible the brain combines EBL and RBL at the level of
teaching signals instead of at the level of actions (i.e., as in eq. ).

A.3 Policy representations

As we briefly described in section E], the actions (motor commands) are assumed to follow a Gaussian
policy,

a~ my(ar | st) = N(at | py(st), 2p(st) + Lixea) (5)

where t denotes the current trial, the mean, p4, and (diagonal) covariance/variance, ¥4, are
parametrized by synaptic weights, ¢ (e.g., the synaptic weights of the area encoding the policy). We
also assume a certain degree of motor variability to be fixed and non reducible (i.e., X1, since
some degree of human motor variability seems always present [19]. These (policy) synaptic weights,
¢, are learned based on the action-gradient model introduced in section[3] In the sections
and the visuomotor reversal task[A.4.2] the policy parametrization consists of a linear model, taking
the desired target as input (i.e., s = y*) and, outputting the policy mean, x4, and variance, ai G.e.,
for the 1-dimensional actions),

fe =Y P1 + ¢ (6)
0 =y 3+ da )

Nore, In in the experiments with separate policies for EBL and RBL (Appendix [A.2), we use two
separate (linear) policies, where the RBL policy is exclusively updated based on RBL (section [2),
while the EBL policy is exclusively updated based on EBL (section[2) [e.g., 43|41} 30} 27]]. Note,
this (linear) policy set-up is standard practice in computational models of motor adaptation, where
the action, a, typically represents the arm reaching angle [e.g., 41| 30L 27].

In all the motor learning tasks involving the (non-linear) two-joint arm model, the (Gaussian) policy
is parametrized by 1-hidden layer feedforward neural network, predicting the policy mean, ji4 and
covariance Yy, by taking a cue as input (i.e., the cue encoding different targets in the tasks). In
this setting, the actions sampled from the policy were two dimensional, consisting of the two join
angles controlling the arm position in xy-coordinates (see Appendix [A.3). Finally, in the (non-linear)
line drawing task (Appendix [A.T), the (Gaussian) policy parametrization consists of a recurrent
neural network. This is because the policy has to maintain a memory of the initial cue, which is only
presented at the start of the task. We speculate this (recurrent) policy may be encoded in the motor
cortex, which has previously been associated to recurrent neural networks [87].

A.4 Motor learning tasks

The objective of all motor learning tasks is to find the policy parameters, ¢, that maximises the reward,
r. For each trial ¢, the scalar reward is computed as the (negative) value of the squared distance
between the sensory outcome, ¥, (€.g., the arm position) and the location of the target, denoted as y*,

re = —(y* — yi)? ®)

So the maximum reward is achieved at the target location. Both the RBL and EBL action gradients
attempt to maximise this reward signal (see section [3)).
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A.4.1 Modelling Izawa and Shadmer arm reaching tasks

We employ 2 different targeted arm reaching tasks to reproduce Izawa and Shadmehr [41]’s results
on motor variability and motor generalisation under RBL and EBL. In line with previous models of
reaching adaptation [e.g., 141,130, 27]], we model the reaching dynamics based on a linear motor model,
where the terminal arm position, y, is related to the action, a (i.e., reaching angle) as following,

yr = way + ¢+ € 9)

where €™ ~ N(0, o) controls the amount of sensory noise over the terminal arm position In
section the task follows the exact same set-up as [zawa and Shadmehr [41], where the model had
to reach for a target location, y*, under a visuomotor rotation, which was gradually increased over
320 reaching trials (i.e., 1-degree increase every 40 trials up to 8 degrees of rotation perturbation) [see
41, for more details]. To do so, we pre-train a policy to reach under normal conditions. Note, this
step is not necessary with human participants, since they already know how to reach under normal
conditions. Next, we assess the policy ability to adapt to the rotation perturbation under RBL, EBL.
and a mixture of the two (as described in sectionE]). In the motor generalisation task, we also followed
the exact same set-up as Izawa and Shadmehr [41]], where the policy generalisation performance was
tested on targeted located at [—30, —20, —10, 0, 10, 20, 30] degrees.

A.4.2 Modelling the sensorimotor rotation and reversal reaching tasks

Both tasks involved three phases, 1) an initial baseline phase with no perturbation, 2) a perturbation
phase (i.e., where the rotation or reversal pertubation was applied), 3) a washout phase, where the
perturbation is (suddenly)removed. Before the baseline phase, we pre-trained a policy to perform
the task under normal conditions (i.e., without the perturbation), so that we could get the baseline
performance Note, this step is not necessary with human participants, since they already know how to
perform the task under normal conditions (e.g., they already know how to reach). For the sensorimotor
rotation task, we used the exact same task set-up as Tseng et al. [92], where we modelled the targeted
arm reaches based on the two-joint kinematic arm model described in Appendix [A.5] Briefly, the
agent had to reach for 3 different target location placed at angle degrees of [-45, 0, 45] from the initial
arm position. During the perturbation phase, the visual outcomes in xy-coordinates were rotated of
20 degree relative to its true position and the agent had to learn to adapt its reaches to correct for
the rotation. The residual error was calculated as the averaged reaching error (i.e., in terms of the
euclidean distance from the target) of the last 25 trials of the adaptation phase, reflecting the same
error measure used by Tseng et al. [92] for the experimental data. Further experimental details can
be found at Tseng et al. [92]. For the sensorimotor reversal, we used the exact same task set-up as
Gutierrez-Garralda et al. [28]], where we model dart throwing based on a simple linear model similar
the one described in Appendix[A.4.1] The actions denoted the angle direction at which the dart was
thrown. For the reversal phase, we introduce a reversing of the perceived angle position of the target
by 11.31 degrees, replicating Gutierrez-Garralda et al. [28]. The adaptation measure was defined
as the mean difference between the final throw and the first throw of the perturbation condition,
reflecting the same adaptation measure used by Gutierrez-Garralda et al. [28]] for the experimental
data. For the model predictions in Fig. [3d, the residual error was computed as the (angle) distance
from the target angle for the last trial of the adaptation phase (i.e., how much the agent still had to
adapt to successfully solve the task). Further experimental details can be found at Gutierrez-Garralda
et al. [28]].

A.4.3 Dysfunctional cerebellar predictions during reaching

For this investigation, we again modelled arm reaches based on the two-joint kinematic arm model
described in Appendix [A.5] However, we did not apply any perturbation to the arm reaches, the
agent simply had to reach for a target under normal conditions. To do so, we pre-trained a policy so
that the agent knew how to reach for the target (i.e., cerebellar patients usually know how to reach
for targets before they experience a cerebellar lesion). Next, we perturbed the cerbellar predictions
of the action-to-outcome gradient and measured what happened to the reaching endpoints as the
agent kept reaching for the target (i.e., adapting its reaches based on small irreducible error). This
set-up aims to replicate cerbellar patients that after their cerebellar lesion start performing motor tasks
again. The perturbation consisted on switching the sign to one (or more) action-to-outcome gradient
components predicted by the cerebellum. Based on the two-joint kinematic arm model, there are four
action-to-outcome gradient components that could be perturbed. This is because the arm takes two
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dimensional actions as inputs (i.e., the two joint angles) and output a two dimensional vector, encoding
the xy-coordinate of the arm position in space. We reported below the four action-to-outcome gradient
components (i.e., the Jacobian matrix of the two-joint arm model),

dyi  dya

da da

dys  dys (10)
da1 dag

where, (y1, y2) denote the xy-coordinate of the arm position after taking the action (a1, az), encoding
the two joint angles (i.e., denoted as (3)*, 1)?) in the arm model). Therefore, the cerebellar module
learned to predict these four components in eq. [I0} First, we induced a cerebellar perturbation
by switching the sign to one component at the time, aiming to reproduce a focal cerebellar lesion.
This resulted in the classical cerebellar dysmetria symptoms plotted in Fig. [3f.i,j, where each plot
represented a different component that was perturbed (note, we found one component did not affect
performance, that’s why there are only 3 plots with perturbations). For Fig. [3g, we randomly switched
the sign of a different cerebellar predicted component before each trial, aiming to reproduce a broader
cerebellar lesion. The dysmetria score was computed as the amount of vertical displacement plus the
amount of horizontal displacement from the target (i.e., in terms of euclidean distance), in line with
classical measure of dysmetria [see|33].

A.4.4 Toy task

This task aimed to reproduce the complex non-linear and high-dimensional relation between actions,
a, and sensory outcomes, ¥, in the 'real” world. To do so, we model the task dynamics with a high-
dimensional non-linear feedforward neural network with fixed weights (i.e., fixed task dynamics).
This network comprised a single hidden layer of 256 hidden units, taking 10-dimensional actions
as input, a, and outputting a 3 dimensional outcome, y (e.g., Xyz-coordiante in space). The goal of
the task was the same as the previous tasks, learning a policy, 74, that achieve the desired outcome,
y*. Specifically, the task comprised of 10 targets, y*, which the policy had to achieve. The policy
consisted of a single hidden layer feedforward neural network (56 hidden units), taking a cue as input
and outputing a Gaussian distribution over the actions (i.e., a Gaussian polciy). The cue served to
distinguish the 10 different targets. Similarly to all the other tasks, the reward function, r, was the
(negative) of the squared euclidean distance between the current output and the target output, (i.e.,
r = —(y* —y)?). The sensory noise levels were modelled by adding zero mean Gaussian noise of
increasing standard deviations to the outcomes, y. The optimal 8 was determined by finding the
value that lead to learning the policy achieving the highest task reward across an entire training run
with a fixed level of sensory noise (i.e., for 5000 trials/episodes).

A.4.5 Line drawing task

In the line drawing task, a recurrent (Gaussian) policy has to learn to control a two-joint arm model
to draw six (target) straight lines, each over 10 time steps, ¢. An initial cue indicates which of the six
(target) lines the policy has to draw at any given trial. Crucially, this cue is only provided at the initial
time step, t = 0. Therefore, the policy has to recall the correct cue over the following 9 steps in order
to draw the correct line. In this task, the reward is computed as following,

r=—> (& —2(s))>+ (v — i (5)° (1)
tcFB

where (z;(s), y; (s)) denotes the target location at time ¢ to draw the corresponding target straight
line given the initial cue, s, while FB indicates the set of time steps at which a feedback is provided
(i.e., controlling the sensory temporal feedback). In order to compute the ’directed’ sensory error
component, g—;, of the EBL action gradient, we assume the brain can directly differentiate the reward
(function) relative to y. We think this is plausible since, in this task, the reward is again a simple
(squared) distance in visual space. Alternatively, a (differentiable) reward function may be learned
from practice. Conversely, we assume the cerebellar module learns to predict the action-to-outcome
gradient component, %, of the EBL action gradient (see section . Finally, the ataxia score is
computed as the total deviation between the arm position across all the 10 time steps and the required
locations to draw the correct straight line given the cue,

10
Ataxia score: Z V(e —x(8)2 + (e — yi(s))2 (12)

t=0
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This is in line with previous work [e.g., 8, [71].

A.5 Two-joint arm model

To model the arm reaches, we employ a 2-dimensional (non-linear) kinematic arm model [[17],

z, = 1" cos(¢}) + 12 cos(p)} + ¥?) (13)

ye =11 sin(y) + I sin(y; +97) (14)
where (2, y¢) denote the arm position in xy-coordinates at the trial ¢ (i.e., modelling planar reaching
movements). The variables 1} and 1)? respectively represent the angles of the shoulder and elbow
joints at trial ¢, while ' and [? respectively denote the (constant) upper and lower arm length.
Therefore, at any given trial ¢, the policy has to provide the two corresponding joints’ angles to
control the position of the arm in space, (1}, 97) ~ mg(az | s).

A.6 Cerebellar module

In the system-level circuits (section M), we assume the cerebellum learns to predict the action-to-
outcome gradient component, 5%, of the EBL action gradient [e.g., 21]. In line with previous
work [[71} 18], we represent the cerebellum as a one hidden-layer feedforward neural network. This
cerebellar network is trained to predict the action-to-outcome gradlent, 7> given the current action, a,

(motor command) and the corresponding (sensory) outcome, y at the end of each trial. This predicted
action-to-outcome gradient, g , is successively combined with the corresponding 'directed’ sensory
error component, d , (i.e., coming from sensory cortical areas) to compute the EBL action gradient.

In our expenments we assume the cerebellar network is provided with the target action-to-outcome

gradlents . Hence, we could train the cerebellar network using a mean-squared loss between the
network predlctlons and the target action-to-outcome gradients, for each task,
dy g
Ecerebellum = T Z < fcerebellum(ata yt)) (15)

for T' number of trials and feerebeltum (¢, yt) representing the cerebellar network. We followed this
procedure for simplicity, since the scope of the paper was not explain how the cerebellum may learn
the action-to-outcome gradients.

Nevertheless, in Fig.[I] we speculate in the brain, the cerebellum may learn these quantity based on
finite-difference methods of gradient estimation [see[86]]. Specifically, the cortex could keep track of
small changes in (sensory) outcomes, Ay, relative to small changes to motor commands (actions)
Aa. The cortex could send this information to the inferior olive, which in turn could compute a

finite difference estimate of the action-to-outcome gradient (i.e., by simply computing a ratio, Aa
providing this as a target to the cerebellum [i.e., in line with well-known mechanism of the 1nfer10r
olive providing a teaching signal to the cerbellum (100, 156, 40\ [3].

A.7 Action-gradient update implementation

In order to compute the ’directed’ sensory error component, dy, of the EBL action gradient, we
directly dlfferentlate the reward (function) in eq. [§]relative to the observed sensory outcome y, to
obtain an estlmate . We think this is plausible in the brain since, in the tested tasks, the reward is
a simple (squared) dlstance between the target, y*, and the movement outcome, y, in visual space
(i.e., eq. , suggesting the brain may directly estimate 3—; from visual information. Alternatively,
the brain may learn a (differentiable) reward function for more complex rewards. Conversely, we
assume the action-to-outcome gradient component, d , of the EBL action gradient to be estimated by
a cerebellar module (see Appendlx . For instance, in the RL literature, the terms dy " and dy are
typically estimated by differentiating through a learned model of the transitions, (7, §:) = fu (st, a)
for an initial state, s [i.e., model-based policy gradient|32]. Finally, to correctly estimate the product
between the Mixed action gradient in eqand the term driving synaptic plasticity, dd 5 we employ
the reparameterization trick. We need this because the policy is Gaussian implying the relation
between actions, a, and the policy parameter, /i, is stochastic [46].
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We also report here the "Mixed’ action-gradient update for the variance parameter of the Gaussian
policy, ori, (i.e., reported here for 1-dimensional case for simplicity),

EBL action gradient RBL action gradient
—
dr dr dg 5((a—pg)? —03)
=g, oY 1— 16
do?, dy da + ol (1=5) (16)

Note, the RBL action gradient on average increases the (policy) variance parameter whenever the
RPE is negative (i.e., § < 0), while decreasing it whenever the RPE is positive (i.e., § > 0). Hence,
under RBL, we should expect higher motor variability whenever we do not encounter rewards (i.e.,
leading to negative RPEs) and vice-versa.

A.8 Code repository

All  the code is available at |https://anonymous.4open.science/r/
ActionGradients-901B/

A.9 Hyperparameters

Several hyperparameters are reported throughout the Appendix, all the rest can be found at/https :
//anonymous.4open.science/r/ActionGradients-901B/.
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